Antioxidant and anti-inflammatory properties of maternal milk

Inflammatory properties of maternal milk

The high hydrostatic pressure processing of donor milk may better protect preterm infants from gut and liver pathologies compared to Holder pasteurization, which is currently used in most human milk banks

Preterm infants are highly susceptible to oxidative stress due to an imbalance between endogenous oxidant and antioxidant systems. In addition, these newborns are frequently fed with donor milk (DM) treated by Holder pasteurization (HoP) at 62.5 °C for 30 min, which is known to alter numerous heat-sensitive factors, including some antioxidants. High hydrostatic pressure (HHP) processing was recently proposed as an innovative method for the treatment of DM.

The present study aimed to measure the redox balance of HoP- and HHP-DM and to study, in vivo, the effects of HoP- and HHP-DM on the gut and liver. H2O2, vitamin A and vitamin E (α- and γ-tocopherols) concentrations, as well as the total antioxidant capacity (TAC), were measured in raw-, HoP- and HHP-DM. The gene expression level of antioxidant systems and inflammatory response were quantified in the ileum and liver of adult mice after 7 days of oral administration of HoP- or HHP-DM. HoP reduced the γ-tocopherol level, whereas HHP treatment preserved all vitamins close to the raw milk level. The milk H2O2 content was reduced by HHP but not by HoP.

The total antioxidant capacity of DM was reduced after HHP processing measured by PAOT-Liquid® technology but was unaffected after measurement by ORAC assay. In mice, HHP-DM administration induced a stimulation of antioxidant defenses and reduced some inflammatory markers in both the ileum and liver compared to HoP-DM treatment. Our preliminary study suggests that the HHP processing of DM may better protect preterm infants from gut and liver pathologies compared to HoP, which is currently used in most human milk banks.

Source : Wemelle E, Marousez L, Lesage J, De Lamballerie M, Knauf C, Carneiro L. In Vivo Assessment of Antioxidant Potential of Human Milk Treated by Holder Pasteurization or High Hydrostatic Pressure Processing: A Preliminary Study on Intestinal and Hepatic Markers in Adult Mice. Antioxidants (Basel). 2022 May 31;11(6):1091. doi: 10.3390/antiox11061091. PMID: 35739988; PMCID: PMC9220199.

Research

Categorie

Archives

Salon BioFIT 2023

Join us for Salon BioFIT2023 where we'll come together to foster a sens of community, collaboration and success. Let's meet !Booking plateform link Maybe you can also like : Foodtech innovative research boosted with gut and gut-brain axis

Enteric neurons for functional applications in health care

Pharmaceuticals Studying the role of the Enteric Nervous System (ENS) in the development of gut-brain pathologies (e.g., Alzheimer’s, Parkinson’s, diabetes, aging, stress, visceral pain) is an ever-expanding research topic. Researchers are starting to propose numerous...

Enteric neurons and glycemia control

The gut-brain axis:You have a message from your gut In the intestine, gut distension and nutrients are detected by mechanoreceptors and chemoreceptors, respectively. The activation of these receptors sends an afferent nervous message to the hypothalamus in the brain....

The enteric nervous system is our second brain

  The enteric nervous system (ENS), referred to as the “second brain,” is an extensive network of different cell types located along the digestive tract. It consists in enteric neurons, enteric glial cells and interstitial cells of Cajal. This network of cells is...