Glucose is an Enterosyne with deleterious impact of insulin sensitivity

Targeting the enteric nervous system that controls gut motility is now considered as an innovative therapeutic approach in T2D. Indeed, it may limit intestinal glucose absorption and restore the gut‐brain axis to improve insulin sensitivity

So far, little is known about the role of glucose on duodenal contraction in fasted and fed states in normal and diabetic conditions.

Type 2 diabetes (T2D) is associated with a duodenal hypermotility in postprandial conditions that favors hyperglycemia and insulin resistance via the gut-brain axis

Enterosynes, molecules produced within the gut with effects on the enteric nervous system, have been recently discovered and pointed to as potential key modulators of the glycemia. Indeed, targeting the enteric nervous system that controls gut motility is now considered as an innovative therapeutic approach in T2D to limit intestinal glucose absorption and restore the gut-brain axis to improve insulin sensitivity.

Thus, the aim of the present study was to investigate these effects in adult mice. (2)

Methods :

Gene-expression level of glucose transporters (SGLT-1 and GLUT2) were quantified in the duodenum and jejunum of normal and diabetic mice fed with an HFD. The effect of glucose at different concentrations on duodenal and jejunal motility was studied ex vivo using an isotonic sensor in fasted and fed conditions in both normal chow and HFD mice. (3)

Results :

Both SGLT1 and GLUT2 expressions were increased in the duodenum (47 and 300%, respectively) and jejunum (75% for GLUT2) of T2D mice. We observed that glucose stimulates intestinal motility in fasted (200%) and fed (400%) control mice via GLUT2 by decreasing enteric nitric oxide release (by 600%), a neurotransmitter that inhibits gut contractions.

This effect was not observed in diabetic mice, suggesting that glucose sensing and mechanosensing are altered during T2D. (4)

Conclusions :

Glucose acts as an enterosyne to control intestinal motility and glucose absorption through the enteric nervous system. Our data demonstrate that GLUT2 and a reduction of NO production could both be involved in this stimulatory contracting effect.

Source : Wemelle E, Carneiro L, Abot A, Lesage J, Cani PD, Knauf C. Glucose Stimulates Gut Motility in Fasted and Fed Conditions: Potential Involvement of a Nitric Oxide Pathway. Nutrients. 2022 May 23;14(10):2176. doi: 10.3390/nu14102176. PMID: 35631317; PMCID: PMC9143273.

Research

Categorie

Archives

Enterosys welcomes its new assistant engineer

Manon Carratala Lasserre joined the Enterosys team in November 2022 and is in charge of service delivery. She obtained a Master’s degree in Immunology and infectious diseases at the Paul Sabatier University in Toulouse. During her internships, she first worked on...

Enterosys participates in Biofit 2022 in Strasbourg

With the highest attending rate of academics, TTOs and research institutions, BioFIT is the place where academia-industry collaborations get started. BioFIT has taken on a whole new dimension becoming the meeting point in Europe for tech transfer and for sourcing...

Enterosys will attend NutrEvent 2022 in Nantes

NutrEvent is the event dedicated to innovation in Food, Feed, Nutrition and Health. This year, NutrEvent is back for its 8th edition in a hybrid format. This hybrid event will be held both in-person and online. Enterosys will be present with a validated, complete and...

Enterosys welcomes its new business developer

This month, Pauline Caseilles joined the Enterosys team as a Scientific Business Developer. Her mission: to publicize Enterosys' service offerings. Pauline obtained a Master’s degree in Health Biology and a Specialized Mastere in Marketing and Sales also in the field...

Antioxidant and anti-inflammatory properties of maternal milk

The high hydrostatic pressure processing of donor milk may better protect preterm infants from gut and liver pathologies compared to Holder pasteurization, which is currently used in most human milk banks Preterm infants are highly susceptible to oxidative stress due...