Camu camu and its applications in nutraceutics

The Amazonian forests are home to a shrub, the camu-camu, whose fruit could be of great help in the fight against obesity and metabolic diseases. This is described in our latest study published with the A-Mansia R&D team in the journal Metabolites.

Overweight, obesity, and their comorbidities are currently considered a major public health concern.

Today considerable efforts are still needed to develop efficient strategies able to attenuate the burden of these diseases. Nutritional interventions, some with plant extracts, present promising health benefits. In this study, we evaluated the action of Camu-Camu (Myrciaria dubia), an Amazonian fruit rich in polyphenols and vitamin C, on the prevention of obesity and associated disorders in mice and the abundance of Akkermansia muciniphila in both cecum and feces. Methods: We investigated the dose-response effects of Camu-Camu extract (CCE) in the context of high-fat-diet (HFD)-induced obesity. After 5 weeks of supplementation, we demonstrated that the two doses of CCE differently improved glucose and lipid homeostasis.

The lowest CCE dose (62.5 mg/kg) preferentially decreased non-HDL cholesterol and free fatty acids (FFA) and increased the abundance of A. muciniphila without affecting liver metabolism, while only the highest dose of CCE (200 mg/kg) prevented excessive body weight gain, fat mass gain, and hepatic steatosis. Both doses decreased fasting hyperglycemia induced by HFD. In conclusion, the use of plant extracts, and particularly CCE, may represent an additional option in the support of weight management strategies and glucose homeostasis alteration by mechanisms likely independent from the modulation of A. muciniphila abundance.

Source : Abot A, Brochot A, Pomié N, Wemelle E, Druart C, Régnier M, Delzenne NM, de Vos WM, Knauf C, Cani PD. Camu-Camu Reduces Obesity and Improves Diabetic Profiles of Obese and Diabetic Mice: A Dose-Ranging Study. Metabolites. 2022 Mar 29;12(4):301. doi: 10.3390/metabo12040301. PMID: 35448490; PMCID: PMC9025096.

Research

Categorie

Archives

Antioxidant and anti-inflammatory properties of maternal milk

The high hydrostatic pressure processing of donor milk may better protect preterm infants from gut and liver pathologies compared to Holder pasteurization, which is currently used in most human milk banks. Preterm infants are highly susceptible to oxidative stress due...

Targeting our second brain using prebiotics

The discovery of intestinal actors, such as enterosynes, able to modulate the ENS-induced duodenal contraction is an innovative approach. Among all the intestinal factors, the understanding of the role of gut microbes in controlling glycaemia remains a major target....

Commercial H/F – Biotechnologie

What we will accomplish together Pursue your career with a pure player in preclinical testing and accompany us in our growth! We need your scientific knowledge and your commercial appetite to build the commercial division! We are waiting for you at a key moment of our...

How does the gut microbiota interact with the your second brain?

Currently, the gut is considered a primary site for the development of pathologies that modify brain functions such as neurodegenerative (Parkinson's, Alzheimer's, etc.) and metabolic (type 2 diabetes, obesity, etc.) disorders. Deciphering the mode of interaction...